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Abstract. When using multiple three-axis sensors, misalignments be-
tween the sensors can corrupt the measurements even when each individ-
ual sensor is well calibrated. An algorithm was developed to determine
the misalignment between any two three-axis sensors whose unit vectors
are known in the inertial frame and can be measured by the sensor in
body coordinates. This is a batch algorithm, assuming each sensor has
been individually calibrated, and requires no extraneous equipment. The
input to the misalignment algorithm is a locus of measurements, the
paired body-fixed measurements of both sensors, and the known unit
vectors for each in inertial coordinates. The output of the algorithm is
the misalignment direction cosine matrix matrix such that the second
(slave) sensor can be rotated into a consistent coordinate frame as the
first (master) sensor. The algorithm works both with heterogenous and
homogenous sensors (e.g., accelerometer and magnetometer or multiple
magnetometers). The algorithm was validated using Monte Carlo simula-
tions for both large and small misalignments, with and without realistic
sensor noise, and shows excellent convergence properties. The algorithm
is demonstrated experimentally on a small UAV sensor package and on a
small satellite equipped with three high quality magnetometers. In both
cases, the algorithm identifies large misalignments created during instal-
lation, as well as residual small misalignments when sensing axes are
aligned.

1 Introduction

The problem of estimating attitude from vector measurements is well studied
for aircraft and satellites. Often known as Wahba’s problem due to her 1965
problem in the SIAM Journal [1], there have been myriad solutions proposed
and implemented [2]. While these methods all work very well in practice, they
assume that the sensors are in fact perfectly aligned and calibrated. That is,
the assumption is that the two independent sensors are rigidly coupled and
have collinear sensing axes. Furthermore, all null shifts, scale factors, and cross
coupling on the axes are also assumed to be fully calibrated.

The literature is rich with calibration solutions for determining the null shifts,
scale factor errors, and cross coupling [3][4][5]. However, there are far fewer
works specifically about calibrating the misalignment of one three axis sensor



to another so that the sensor frames are coincident. [6] solves a misalignment
problem for multiple IMUs using a manufactured platonic solid; [7] (and its
related works) proposes three different related methods for “harmonizing” the
sensor axes of homogenous sensors; [8] addresses a similar problem with Rotation
Averaging for cameras in the Computer Vision domain. It can be assumed that
the sensor suite is never perfectly aligned with the body axes. This is also true
of robotics where accelerometers mounted at the joints are misaligned due to
inherent manufacturing variations.

There are many applications where three axis sensors are used for attitude
measurements (e.g., aircraft, satellites, UAVs, and underwater vehicles). For ex-
ample, small UAVs will often use a combination of accelerometers and magne-
tometers to provide aiding which is then used to estimate biases on the gyros.
Previous work on calibrating the three axis sensors for inherent biases and scale
factor errors based on a two-step solution [3, 4] or an iterated least squares so-
lution [9] have proven effective. Note that while these solutions calibrate the
individual sensor triads, they provide no information about relative sensing axes.

When considering the ensemble averaging of sensor measurements (using
multiple of the same sensors to improve the signal to noise), there is an inherent
assumption of a common coordinate frame for each of the sensors. If the sensor
axes are misaligned, then the averaging of each axis will degrade the signal to
noise ratio (SNR). When using multiple sensors to measure the gradient of the
field as an additional measurement, again each sensor must be in a consistent
coherent axis system or the results will be off [10].

The contribution of this new algorithms is to extract the misalignment be-
tween two sensors without any need for an external reference. This greatly sim-
plifies the calibration procedures, and can easily be implemented in the field.

Note that this same algorithm can be applied to align heterogenous sensors
(e.g., magnetometer and accelerometer), to align multiples of the same sensor
(for ensemble averaging or gradient measurement), or to align the sensor suite
to the vehicle body frame. The paper proceeds as follows: Sec. 2 will develop the
theory of the new algorithm and its application, Sec. 3 will explore numerical
simulations of the algorithm showing convergence metrics and noise sensitivity,
Sec. 4 will describe two experiments that were used to test the algorithm on real
world data and the results of our new algorithm, and Sec. 5 presents conclusions
and future directions.

2 Theory

Of the many solutions to Wahba’s Problem, we will use the formulation by
Markley in [11] which uses the singular value decomposition (SVD) to solve for
the direction cosine matrix (DCM). For completeness, that solution is presented
here:

min
R

J(R) =
1

2

n∑
i=1

ai ‖wi −Rvi‖2 (1)



where wi are a set of vectors in the inertial frame, vi are the corresponding set
of vectors in the body frame, and R is the DCM that transforms a vector from
the body to the inertial frame. The ai’s are an optional set of weights, which for
normalization purposes,

∑
ai = 1.

From the original solution to Wahba’s Problem in [12], we have the formula-
tion that J(R) can be expressed as:

J(R) =
1

2

n∑
i=1

ai ‖wi −Rvi‖2 (2)

=
1

2
tr(W −RV )T (W −RV ) (3)

= 1− tr(WRV T ) (4)

J(R) = 1−
n∑

i=1

aiwi
TRvi (5)

Markley’s solution [11] is based on the SVD decomposition, and proceeds as
follows:

B =
1

2

n∑
i=1

aiwivi
T (6)

svd(B) = UΣV T (7)

R = UMV T (8)

where M = diag(
[

1 1 det(U) det(V )
]
) and is used to enforce that R is a rotation

matrix for a right handed coordinate frame. That is:

Ropt = U

1 0 0
0 1 0
0 0 det(U) det(V )

V T (9)

From this solution, the optimal rotation matrix, R, can be extracted for any
set of non-collinear vectors. Markley’s solution will be used extensively through-
out the development of the algorithm.

Before continuing with the solution, it is useful to visualize the problem.
Consider two unit vectors that are known in inertial coordinates, defined as m̂
and ŝ for master and slave respectively. The notation we will use shows the
coordinate frame to the right of the vector such that Im̂ is the inertial master
unit vector, expressed in the inertial frame, and Bm̂ is the same unit vector
expressed in the body frame.

The key observation is that while the individual unit vectors may be pointed
anywhere (e.g., the body frame is not aligned to the inertial frame), there is a
constant solid angle between the two (master and slave) unit vectors in the body
frame. When rotating the body through a set of orientations, the error in that
solid angle will project onto each axis of the basis set and make the misalignment
matrix observable. That is, a rich set of paired measurements in the body frame
is sufficient to reconstruct the misalignment matrix between master and slave
sensors.



2.1 Misalignment Calculation

Consider a rigid body with two three axis sensors (one master, m, and one slave,
s) which measure the three components of their respective signals. That is, for
any arbitrary rotation of the rigid body, R, the sensors will measure:

Bm̂i = Ri
T [Im̂] + νm (10)

B ŝi = Ri
T [I ŝ] + νs (11)

where Ri is the rotation matrix for that specific measurement, and is not known,
and ν is sensor noise. Note that in this case, Wahba’s problem can be used to find
Ri, but that is only because the sensors both share a common coordinate frame.
If, however, the master and slave do not have the same coordinate frames, then
there will be a misalignment matrix, Rmis that effectively rotates measurements
in the body-slave frame to the body-master. That is:

BM ŝi = Rmis
BS ŝi (12)

Where BM and BS refer to body-master and body-slave coordinates. The
misalignment matrix Rmis is constant in the body frame, then Eq. 10 becomes:

Bm̂i = Ri
T [Im̂] + νm (13)

B ŝi = RmisRi
T [I ŝ] + νs (14)

This constant, unknown misalignment between the coordinate frame of the mas-
ter and the slave must be estimated before using the sensors (either for ensemble
average or for attitude estimation). Data from each sensor is collected at differ-
ent attitudes of the body to generate the paired measurements which can be
collected into matrix form:

BM =
[
Bm̂1

Bm̂2 · · · Bm̂n

]
(15)

BS =
[
B ŝ1

B ŝ2 · · · B ŝn
]

(16)

The algorithm for estimating Rmis uses an iterative approach through all
of the paired measurements. R̂mis is initialized to the identity matrix (a valid
DCM). We rotate the body fixed measurements of the slave by the estimate of
the misalignment matrix:

B̂S = R̂mis
BS = R̂mis

[
B ŝ1

B ŝ2 · · · B ŝn
]

(17)

Eq. 17 is used to rotate all slave measurements by the estimate of Rmis.
Each measurement pair is then plugged into a Wahba’s problem to solve for the
individual rotation matrix Ri for each measurement (see Eq. 9). Thus, for each

measurement i we compute Ri from B̂Si and Bm̂i. With this Ri estimate, we



calculate a new B ŝ by rotating the slave unit vector I ŝ into the body frame.
That is:

Bsi = Ri
T [I ŝ] (18)

which are aggregated into a larger 3 × n matrix, BS. We then again use the

solution to Wahba’s problem, this time with BS and B̂S with the resulting
solution being a new estimate of the misalignment matrix, R̂mis. This is repeated
until the misalignment matrix converges.

It is easy to see that when R̂mis is equal to Rmis, then by Eq. 17, Eq. 18,

and Eq. 14 that BS will equal B̂S, because R̂T
misRmis = I3×3. We check the

convergence of R̂mis by checking the Frobenius norm of the difference between
subsequent steps and stop when it is below some tolerance (generally set at
10−15).

Indeed, the algorithm can be shown to always converge to a local minima by
expanding Eq. 1 with the definitions of the body measurements, Eq. 14, ignoring
the noise terms and rearranging:

J(R,Rmis) =
1

2

n∑
i=1

∥∥Is[I−RiRmisRi
T ]
∥∥2 (19)

The cost function is everywhere differentiable, thus the algorithm breaks down
into a block-coordinate descent approach which alternately optimizes for theRi’s
with Rmis held fixed (which decouples into n Whaba’s problems), and then for
Rmis with the Ri’s fixed (which is a simple Procrustes problem on the vectors
s). Since each sub-problem can be optimally solved, the block coordinate descent
always converges to a local minima.

Algorithm 1 Compute Rmis

1: R̂mis ← I3×3

2: if R̂mis not converged then

3: B̂S← R̂mis

[
B ŝ1

B ŝ2 · · · B ŝn
]

4: for all measurements i in the body frame do

5: Solve Wahba’s Problem using v =
[
Bm̂i

B̂Si

]
and w =

[
im̂ iŝ

]
for Ri

6: Bsi ← Ri
T [iŝ]

7: Collect all Bsi into BS
8: Solve Wahba’s Problem using V = B̂S and W = BS for R̂mis

9: if
∥∥∥R̂mis − R̂prev

mis

∥∥∥
Frobenius

6 tol then

10: done
11: else
12: goto step [3]

13: Rmis ← R̂mis

Note that the algorithm still works when m̂ and ŝ are the same (e.g., homoge-
nous sensors). This is due to the SVD nature of Markley’s solution to Wahba’s



Problem, which returns the minimal answer (Eq. 9) even when RankB = 2; as
long as there are sufficiently diverse measurements observe the misalignment,
the estimate for Rmis will converge to a local minima.

3 Simulation

In order to determine the convergence and stability of the algorithm, as well
quantify the error in estimates of Rmis, a set of Monte Carlo numerical simula-
tions were performed.

Two unit vectors, m̂ and ŝ, and Rmis were chosen at random, using Rmis =
e[ω×] where ω is a randomly chosen rotation [3 × 1] and [·×] is defined as the
skew symmetric matrix.

An additional number of random rigid body rotations, Ri (varied from 3
to 50) were used to generate BM and BS. The simulations were run with both
with and without noise added to the body measurements. Typical noise variance
on each measurement was set to 0.01 (though anecdotal observations show the
algorithm is quite tolerant of larger noise variance in simulation).

For observability of the R̂mis a minimum of three non-coplanar body fixed
measurements are required. However, with only three measurements, the like-
lihood of converging to the correct R̂mis is poor. More measurements increase
the probability of converging to the correct answer.

Fig. 1 shows a typical run for a scenario with n = 4 unique Ri’s. The two true
inertial unit vectors (orange), master (black) and true slave (blue) unit vector
triads are shown in the body coordinates. The misaligned slave (green dashed)
are shown as well (green dots show the misalignment iterations for clarity). The
solution for the estimated slave (blue dots) are shown at each iteration. In this

case, R̂mis does indeed converge to the true value. As another visualization,
the axis of R̂mis (cyan, in an axis and angle representation) demonstrates the
estimate converging to the correct one (red). In this case, the difference between
the true and estimated misalignment matrix (Frobenius norm) was 4.29×10−15.

The true misalignment matrix had an axis of
[
−0.3554 −0.9850 −0.2695

]
and an angle of 51.11◦. Which is to note that this is not a particularly small
misalignment. This was a noise free case, and converged to the true value in 208
iterations.

Fig. 2 shows another simulation with n = 12 measurements; again the unit
vectors (in orange), along with the body measured vectors (in black with tri-
angles for the master and blue for the slave). The misaligned measurements
are shown in green dashed line with triangles with the dots showing the evolu-
tion of the R̂mis. Again, here the cyan vectors show the axis of the estimated
misalignment and the blue dots show the convergence of the estimate. In this
simulation, noise has been added to all body measurements. The estimate con-
verges to within 10−2 of the exact misalignment, even in the presence of noise
(this corresponds to an angular error of less than 1

2

◦
).

The tolerance was set to 1× 10−15. Note that due to the use of the Markley
SVD solution, the covariance of the misalignment matrix is also available, and
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Fig. 1: Simulation of the misalignment problem with n = 4 measurements, show-
ing the master (black) and true slave (blue) unit vector triads. The misaligned
slave unit vector triads (green dashed), and the iterations that walk in the solu-
tions to Rmis, showing convergence to the true axes. The inertial sensor vectors
are shown in orange, and the axis of Rmis is shown in red, with the steps shown
in cyan.

shows in simulation that the converged misalignment is well within the noise co-
variance of true even when using noisy data. See [11] for details of the covariance
matrix.

Using Monte Carlo simulations with 10000 runs for each of n = [3, 4, 5, 10, 20, 50]
demonstrates that the more data available in terms of measurements, the more
likely convergence will occur. There are two available metrics to quantify conver-

gence: (i)
∥∥∥Rmis − R̂mis

∥∥∥
F

and (ii) the dot product of the true axis of rotation

and the estimated one: 1 − vT v̂. Since both of these measures are very small
when the algorithm converges, the log of both is taken to quantify convergence;
anything less than −6 is for all intents and purposes converged (corresponding
to angular errors of less than 1

100

◦
). Fig. 3 shows the cumulative probability

distribution from the Monte Carlo runs for various measurement numbers (in
the noise free case). The probability of converging on the correct misalignment
is greater than 98% when n = 50. The small number of iterations that failed to
converge were due to the measurement rotations Ri being insufficiently diverse
to allow reconstruction of Ri from Whaba’s problem.
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Fig. 2: Simulation of the misalignment problem with noise and n = 12, showing
that the misaligned slave vectors (green dashed) converge to their true values
(blue) even in the presence of noise on all measurements.

It is noted from the simulation results that the estimate of the misalignment
matrix can become trapped in a local minima. If the algorithm is restarted with a
different initial condition (R0 6= I3×3) then it will often converge to the correct
solution. This indicated how to validate the global nature of the estimate in
practice. Segregate the data into two or more segments of at least 20 points
each. Run the algorithm on each from at least two separate R0. If all converge
to the same estimate, then the estimate has converged to the true value with
high confidence.

Fig. 4 shows the CDF for several variants of the n = 20 Monte Carlo simu-
lation (note that this is a relatively small number of individual measurements).
The nominal noise free case (blue) has a 96.5% chance of success. If a simple
retry of resetting the initial guess on R0 is allowed, then the probability goes to
99.2% (red). In the case of noise added to the measurements, it simply moves the
lowest Frobenius norm, but does not actually affect convergence (black). This
is because the noise is uniformly distributed and thus averages out through the
Wahba’s problem solution. When the misalignment matrix is constrained to be
small (< 6◦ on any axis), then the convergence in 100% for both the noise free
and noisy cases (green and cyan respectively). Thus, for small misalignments,
this algorithm always finds the true solution.
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Fig. 3: Cumulative probability distribution of convergence for various measure-
ments (noise free), showing the error between true Rmis and the estimate.

4 Experimental Results

In order to demonstrate applications of the algorithm, two different experiments
were performed. The first was from a small satellite experiment where three
high quality magnetometers are used to take an ensemble average to generate
better data for a space weather application. The second was from a small UAV
autopilot (see Fig. 6) from its accelerometer and magnetometer sensors, where
the data comes from a tumble test used to calibrate the sensors for scale factor,
biases, and non-orthogonality [13].

4.1 SmallSat Experiment

For the SmallSat experiment, data was provided from three high quality flux-gate
magnetometers mounted on a rigid platform. Rather than rotating the rigid plat-
form, it was inserted into a Helmholz coil which could manipulate the magnetic
field simulating body rotations in a very controlled manner. Three experiments
were run, with data collected at each instance. Before any calibration was per-
formed, the magnitude of the total magnetic field was calculated for each of the
three sensors showing a mean of ∼900nT and a standard deviation of ∼5-10nT .

The first calibration pass was to correct the magnetometers for bias, scale
factor, and non-orthogonality errors using our previous two step techniques out-
lined in [3] and [4]. This forced the mean to exactly 900nT and resulted in a
standard deviation of ∼1.35nT .

When plotting the post calibration data individually (see Fig. 5a), it can
be easily seen that this is a general lack of agreement between some of the
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axes of the three magenetometers (this was not known until the algorithm was
run to estimate Rmis). That is, there is a large rotation between one of the
magnetometers and the other two due to the installation of the magnetometers
on the platform.

Using Magnetometer “A” as the master, the misalignment matrix between
A and B is computed as:

A→B

Rmis =

−0.00287 0.99998 0.00496
−0.99993 −0.00292 0.0119

0.0119 −0.00492 0.99992


and the misalignment between A and C is computed as:

A→C

Rmis =

−0.99992 −0.01257 −0.00214
−0.01256 0.9999 −0.0071

0.00223 −0.0071 −0.99997


Note that while

A→C

Rmis is somewhat close to a 180◦ rotation (x and z axes re-
versed), the one from A→ B is not, indicating that it is mounted differently (the
third magnetometer is mounted underneath the test platform). Finally, magne-
tometers B and C are rotated into the coordinate frame of A, and an ensemble
average is taken. For the ensemble measurement, the norm of the magnetic field
has a mean of 900nT and a standard deviation of 1.31nT . While this is only
a small improvement, it nevertheless caught the large misalignment of magne-
tometer B which was mounted on its side. Fig. 5b shows the aligned data, and
shows a much better match on the data then the pre-alignment data.



The conclusion from the small improvement from the ensemble average (the-
oretically the signal to noise should be an improved by

√
3) is that the noise is

not independent, but rather from the Helmholz coil itself. This means that the
magnetometers are actually capable of better performance than is indicated by
this experiment. This is a result that would not have been possible to determine
without the misalignment correction.

4.2 UAV Tumble Experiment

The second experiment is based on data from the SLUGS autopilot developed
at UCSC for UAV research into guidance, navigation, and control (GNC). The
SLUGS has a MEMS-based Analog Devices three axis accelerometer, and a
Honeywell three axis magnetometer on its circuit board (Fig. 6). While every care
has been made to align the axes during manufacture, assembly, and mounting to
the aircraft, this alignment cannot be trusted to be exact. Furthermore, the
manufacturers of the sensors disagree on coordinate frames for sensing axes
resulting in ambiguity of the polarity of the measurements. The magnetometer
is run through the misalignment calibration process twice: first to correct the
coordinate frame ambiguity, and then again with the appropriate axes flipped
to do the fine alignment.

In order to calibrate these sensors, the aircraft was tumbled in a field by hand
to collect data for processing in our two step calibration routines. This same
data was then used to run the misalignment algorithm to determine the actual
misalignment. Note that the final “realigned” sensor will still be misaligned from
the body axes of the aircraft, but both magnetometer and accelerometer will be
on a single coherent “sensor” frame.

The data from the tumble test was 25, 633 pairs of accelerometer and mag-
netometer data that were run through the algorithm. The algorithm converged
after 241 iterations. The final misalignment DCM was:

Rmis =

 0.9952 −0822 0.0537
0.0816 0.9966 0.0129
−0.0546 −0.0085 0.9985


From the misalignment matrix, it is observed to have pitch and roll misalignment
on the order of 3−4◦. More interesting still is the covariance of the misalignment
estimate:

Pbody =

 1.603 0.7256 −4.576
0.7256 3.013 −9.802
−4.576 −9.802 60.42


Which shows that the algorithm had the hardest part in determining the [3, 3]
term of the matrix. Rerunning the algorithm using decimated data and different
initial R0 always converges to the same value. This gives confidence that this is
the true misalignment matrix for the magnetometer relative to the accelerometer.



5 Conclusions

A batch algorithm for estimating the misalignment between multiple three axis
sensors from sensor measurements in the body frame has been developed. This is
done via repeatedly applying Wahba’s Problem solution to the data and iterating
until converged. The algorithm works with either heterogenous or homogenous
sensors, and is shown to converge well with sufficient number of points. The
misalignment matrix is from one master to a slave sensor. Monte Carlo simula-
tions show convergence probabilities in both the noise free and noisy data cases.
The algorithm was run on two real experiments: a SmallSat (homogenous) and
a UAV (heterogenous). In both cases, the algorithm was able to identify both
large and small misalignments and quantify them in a mathematically rigorous
manner.
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Fig. 5: XYZ data of the three magnetometers: (a) Pre-Alignment and (b) Post-
Alignment



Fig. 6: The SLUGS autopilot


